

Bio Innovation of a Circular Economy for Plastics

Mixed Plastic Waste TRIPLE ACTION DEPOLYMERISATION 1. Physical/Green Chemical 2. Biocatalysis 3. Microbial Consortia Bioproducts Monomer Recovery

Projektleiter:

Dr.-Ing. G. Sourkouni Prof. W. Maus-Friedrichs

Förderzeitraum: 01/2020 – 12/2023

Förderstelle:

EU Commission Horizon 2020 NMPB-TR-IND-2018-2020

Topic: CE-BIOTEC-05-2019 Microorganism communities for plastics bio-degradation

Förderkennzeichen:Proposal number: 870292
Proposal acronym: BiolCEP

Expected Impacts mentioned in the work-programme

IMPACT 1 - A combination of microorganisms expressing at least three novel or improved enzymatic activities enabling the degradation of mixtures of plastics

BioICEP will develop at least **FOUR improved enzymatic activities** enabling the degradation of plastics mixtures (such as PETase, PHA-depolymerase, Cutinase, Triple active biocatalyst).

IMPACT 2 - Degradation of at least 20 percent of non-biodegradable plastics found in plastic mixtures

The minimum expected degradation of mixed waste plastics on completion of the project is **20.5** ±**0.5** % in the case of recalcitrant plastic components and will be measured by **% weight loss post depolymerisation**

IMPACT 3 - At least two high-added-value products sustainably produced from plastic mixtures

BioICEP will identify at least **FOUR high performance**, **high added value**, **high growth potential products** that will be sustainably produced from waste plastic mixtures (such as Bioplastics for Flexible food packaging, Bioplastics for Rigid food packaging, 3D printable Bioplastic Filaments and Biosurfactants).

IMPACT 4 - Description of a sustainable and environmentally friendly pilot system for the degradation of plastic mixtures

BioICEP will deliver **ONE** sustainable and environmentally friendly **100L** pilot plant for the integrated degradation of waste plastic mixtures and production of bioproducts.

TUC contribution

Development of a novel combination of mechanobiochemical processes for the reduction of mixed plastic polymer MW by 25-50 % Means of verification: Methods such as ultrasonication will be combined along with UV-assisted photo degradation, microwave thermal degradation.

Clausthaler Zentrum für Materialtechnik Leibnizstraße 9 38678 Clausthal-Zellerfeld Tel.: + 49-(0)5323-72 3330

Fax: + 49-(0)5323 72 3198 www.czm.tu-clausthal.de

