Technological watch

Application of Composite Bars in Wooden, Full-Scale, Innovative Engineering Products—Experimental and Numerical Study

The commercialization of modular timber products as cost-effective and lightweight components has resulted in innovative engineering products, e.g., glued laminated timber, laminated veneer lumber, I-beams, cross-laminated timber and solid timber joined with wedge joints. With the passage of time, timber structures can deteriorate, or new structural elements are required to increase the stiffness or load-bearing capacity in newly built structures, e.g., lintels over large-scale glazing or garages, or to reduce cross-sectional dimensions or save costly timber material while still achieving low weight. It is in such cases that repair or correct reinforcement is required. In this experimental and numerical study, the static performance of flexural timber beams reinforced with prestressed basalt BFRP, glass GFRP and hybrid glass–basalt fiber bars is shown. The experimental tests resulted in an increase in the load-carrying capacity of BFRP (44%), GFRP (33%) and hybrid bars (43%) and an increase in the stiffness of BFRP (28%), GFRP (24%) and hybrid bars (25%). In addition to this, glued laminated timber beams reinforced with prestressed basalt rods subjected to biological degradation, 7 years of weathering and prolonged exposure to various environmental conditions were examined, and an increase in the load-bearing capacity of 27% and an increase in stiffness of 28% were obtained. In addition, full-size laminated timber beams reinforced with prestressed basalt bars were investigated in the field as an exploratory test under fire conditions at elevated temperatures, and the effect of the physical–mechanical properties during the fire was examined via an analysis of these properties after the fire. In addition, a satisfactory correlation of the numerical simulations with the experimental studies was obtained. The differences were between 1.1% and 5.5%. The concordance was due to the fact that, in this study, the Young, Poisson and shear moduli were determined for all quality classes of sawn timber. Only a significant difference resulted in the numerical analysis for the beams exposed to fire under fire conditions. The experimental, theoretical and numerical analyses in this research were exploratory and will be expanded as directions for future research.

Publication date: 03/02/2024

Author: Agnieszka Wdowiak-Postulak

Reference: doi: 10.3390/ma17030730

MDPI (materials)

      

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 870292.